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Summary

A method of estimation for the parameters of the multivariate
normal distribution based on the characteristic function ‘density) and
its sample counterpart is given. These M-estimators are dependent on a
user-specified parameter. The response of the parameter estimates and
observation weights to variation of this user-specified parameter allows
a sensitivity analysis of the data and the model considered as a single
entity. The estimators have desirable rcbustness properties, are easy to
compute and use, are relatively efficient at the multivariate normal and
are useful in identifying potential outliers and problems with the statis-
tical assumptions or the data. The method is extended to inc! ide multi-
variate experimental designs with attention restricted to the two-way

cross classification. Several illustrations are provided.

Key Words: multivariate normal, sensitivity analysis, M-estimators,
parametric density estimation, adaptive estimation,

two-way cross classification




1. Introduction

A large number of robust procedures are available for univariate
normal data. The number of procedures for the multivariate normal
distribution are fewer in number. The recent books by Huber (1981),
Barnett and Lewis (1978), and Gnanadesikan (1977) provide excellent
reviews and discussions of a major portion of the literature.

The weighted and integrated distance between the assumed distri-
bution function and its empirical counterpart has recently been used by
Parr and Shucany (1980) to produce attractive robust estimators in the
univariate case. The extension of such procedures to the multivariate
case will, however, present computational difficulties which mar be in-
superable. This is not the case with the estimators for location and
covariance matrix that we propose. The univariate case was considered by
Paulson and Nicklin (1981). Simultaneous estimators for location and the
covariance matrix are determined from consideration of the sum of integrated
residuals squared where the residuals are defined as the difference between
a Gaussian characteristic function and its empirical counterpart . This
sum is equiviient to the sum of integrated squared differences between a
Gaussian density and its empirical counterpart. The approach that we
propose is equivalent to one of parametric density estimation, but is quite
different in spirit from the work of Parzen (1962).

The estimators we develop depend on a user chosen parameter A (or
parameters Ajk)‘ Variation of this parameter from large values (most
efficient) to successively smaller values allows the user to determine

the response in the parameter values to this variation. If the data




RysXoseeesXy and the Gaussian model are intermally consistent, then a

flat response surface will result. If the model and data are not intermally

consistent, then the response surface will not be flat and this will signify

potential difficulties in the data or with the Gaussian model or both.
For each observation x5 a weight ij is determined. The variation in the
ij as a function of A is useful in determining the weakest interfaces
between the data and the Gaussian model. Accordingly, an examination of
the response surface of the ;jA
potential outliers. We envision that the primary use for our procedure
will be in performing sensitivity analyses. Secondarily, a robust pro-
cedure results if A is chosen as fixed in the range - % < A < », This
resultant robust procedure is of a somewhat different character from
those discussed by Maronna (1976) and Devlin et al. (1975).

Detailed statistical properties of the modified integrated weighted
squared error are given. An extension of the procedure to examine uni-
variate problems and to the analysis of a two-way layout of multivariate

data is also given. It is indicated that the procedure can be used in a

clusv .. ing context. Several examples are provided.

2. The Estimation Procedure

The x2 minimum procedure consists of determining estimators of a

set of parameters 61,9 ,...,es by minimizing

2

2
k (v,-np,)
i1 (2.1)

with respect to the 8's, The Py = pi(ei, 82,...,08) and v, represents

the number of observations which fall in cell i wheré the k cells con-

stitute a mutually exclusive and exhaustive partitioning of the sample

as a function of A is useful in identifying

ik b

Py




space of the random sample Xys¥pseoesX from a density f(x;el,e2...,es).
The modified x2 minimum procedure consists of determining estimators of

61,92,...,85 from the system

K
) = =0, (2.2)

namely the equations which result from differentiation of (2.1) with
respect to 8 while regarding the denominator as constant (Cramér, 1946,
pp. 4#24-428). The method we propose for the multivariate Gaussian is !

entirely analogous. |

Let XysXpseessX be a random sample of size n from the p-dimensional
Gaussian distribution with px1 mean vector u and pxp covariance vector

V. The density is

£(x) = £(x3u,V) = exp(- % (x-1)7 V'3 (x-p))  (2.3)

|v|

(2w)

and corresponding characteristic function
. T T
$lu) = ¢(uzu,V) = explipy u - % u*vu) (2.4)

vwhere uT = (ui,u2,...,up) is a 1xp vector of real numbers. We shall

generally suppress the arguments u and V of f(x) and ¢(u). Define

o]

a=a (V)= ) I [$Cu) - expiuxj|2iw(¢(u))|2du {2.5)
¥ j=1 R
p

where w(+) is a function to be chosen. The quantity A represents a sum

of integrated weighted squared .esiduals. We shall designate the solutions

for u and V determined from the system
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n
2 Re } I 3%&21 (p(u) - expiuxj)*lm(¢(u))]2 du = 0, (2.8)
j=1 v
E: 3¢(u) 2 4
2 Re } f —%V-_'(¢(U) - expiux,)*|w(¢(u))| = 0, (2.7) '
j=1 ‘R ]

P

as modified integrated weighted squared error estimators. The dimension

of the 0's in (2.6) and (2.7) are defined from context. The notation '#*!'
denotes complex conjugate. The equations (2.6) and (2.7) are completely
analcgous to the modified x2 minimum equations of (2.3). The estimators

of u and V determined from (2.6) and (2.7) are M-estimators and are

affine invariant. If w($(u)) is itself a Fourier transform with inverse
fm(x), then (2.6) and (2.7) admit of a representatinn in terms of densities.
By Parseval's theorem (2.6) and (2.7) have equivalent expressions, &

respectively

2(2m)P jcag‘g") FLOXEGD § £,00 - £,(xx,)) dx
351§
P

202§ J (BE ¥ £ Gy (£(x) ¥ £(x) - £ (x%,)) ax = 0, (2.9)
351§
p

where the symbol z represents convolution of the density f(x) with the

function £ (x). It is important to note that g% (£(x) X fw(x)) #

If(x) x
v

exp(- % u (AV)u) provides an attractive choice since then fw(x) is a

% f (x) Expressions (2.8) and (2.9) show that w(¢(u)) =

Gaussian density with mean vector 0 and variance-covariance matrix AV,

A a constant scalar. The convolution of a Gaussian density with mean u

and variance-covariance matrix V with a Gaussian density with mean 0 and

variance-covariance matrix AV is again Gaussian but now with mean p and




variance-covariance matrix (1+A)V. This choice for w(¢(u)) leads to
attractive computational properties as well as some attractive statistical
properties.

Other attractive choices of w(¢(u)) are easily found. For example,
the choice m(¢(_u))==(1—Id)(u)lz)";5 effectively makes (2.6) and (2.7) an
approximate modified integrated correlated X2 minimum procedure since, for
every fixed u,'z'(¢(u) - expiuxj) is asymptotically complex Gaussian. This
choice leads tojmore complicated numerical algorithms but more efficiency.

The most important aspect of equations (2.6) - (2.9) is that they
show that the characteristic function procedure we are suggesting is
generally equivalent to a multivariate parametric
density estimation procedure since n-l 'E fm(x-xj) in (2.8) and (2.9), is
an unbiased kernel density estimator %;i £(x) % fw(X)' Thus the estima-
tion procedure involves a reconstruction of the smoothed-by—fw(x) error
density. The density f(x) is assumed a priori while the estimate
n-l Z fw(x-xj) is a kind of posterior estimate based on the kernel fw(X)

and the data.

We shall be primarily concermned with the choice

w(#(u)) = exp(- % u' (AV)u) (2.10)
in this and the next section. It may be helpful to observe that
differentiation of

n
) J |oCu) - expiule2 exp(- uTDu) (2.11)

D 521 o
P

with respect to u and V with subsequent setting of D = AV produces equations

(2.6) and (2.7) under the choice (2.10) of w(+). The use of this observation,




although unnecessary, allows for a somewhat simpler derivation of the
estimators; see Paulson and Nicklin (1981) for the univariate version.

The integral AD may be explicitly integrated to give

|¢n(u)|2 exp(~u Du)du

|4
o
1]
Sy
2

-%Tﬁ- Z exp{- ’s(x -u) (V+2D) (xj-u)}

1 We thus find (Dwyer, 1967)

34 2 (2")1@ 2 -1
- (V+2D) = (x.-u) exp(- % Q.(D)) =
T P 3 3
(2.12)
where
Qy(D) = (x].-u)""(v»fzn)'1 (xgw). (2.13)

We use the right hand side of (2.12) to generate an estimating equation

by setting D = AV; then the estimator for the mean satisfies the implicit

equation

n
I x. exp(- % Q,(AV))
L™ ]

B = B i = 5 (2.14a)
351

The simultaneous implicit matrix equation for the covariance matrix

V is determined from (Dwyer, 1967)
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}@ _ n
3B 107 (pop) ! T exp(- % 0.(D))
Wy 3=1 ?
oo -4 B -
LOM7 amy Tt T (xe-w) (emw) T(V42D) exp(- 3 Q5(D))
? |vs2p| =1 ) ]
1 (2m)'® ’Z’ -1
- = (2V+2D) = 0. (2.15)
n |2V+2D|!; j=1

On pre- and post-multiplying (2.15) by (V+2D) and then setting D = AV

we obtain

3 1 T
j§1 {V exp(- 3 Qg (AV) - g (=i (x5-w)" exp(= % Q5(AV))

1+21) ¥(p+2) , _ 16
- (?n_x) Vi =o (2.16)

whence V satisfies, in conjunétion with (2.1%a), the implicit equation

n
) (xJ.—u)(xJ.—u)T exp(- % Q,(AV))

-1 j=1 (2.14b)

Vv = (142))

1422\ K2
jzi [e"P(‘ % Q) - (2+27\) ]

The implicit relationships given in (2.14) suggest that the
estimators u and V be computed via a fixed point algorithm with
%=t ) X; and S = "t ) (xj-i)(xj-x)T supplying the initial guesses
My and VO respectively. Substitute these initial guesses into the right
hand side of (2.14). New estimates H, and V, are obtained from the
left hand side. The new estimates K, and V, are now substituted into

the right hand side of (Z.14) and the process is continued until some

e e n o < P

Pt




pre-specified absolute or relative tolerance between successive estimates
is satigfied. We have found this fixed point algorithm to be effective
in a variety of practical problems and computer simulations. We have

not found it necessary to use second order search methods. This is a
real advantage when the dimension p is large. The question of the values

of X which will be useful in practice is addressed in the sequel.

3. Properties of the Estimators

The estimators for u and V given by (2.10), say u and V, are
M-estimators as is evident from the estimating equations. They are
explicitly dependent on the user-chosen parameter A, even though this
dependence on A will generally be suppressed for convenience.

The estimators p and V are well-defined for A > - %. Modification
of the arguments of Bryant and Paulson (1979) shows that these estimators
are consistent for y and V for A > - % when the xj constitute a random

sample from Np(u,V). It is obvious from (2.14) that lim pu = 1 = n-1

Ao
)) X5 = X, the usual method of moments or maximum likelihood estimator of

w. If Yy Yps =225 ¥y, is a random sample from Np(uy,vy), and for any
nonsingular matrix A, X; = a+ A Vi ij=1,2, ..., n, then u, = a + Aﬁy
and V_ = A V_ AT,
x y
The asymptotic variance-covariance matrices of the estimators n

and V depends on the user-specified parameter A. From (2.12) we find

that the score function for u is

8, = (xj-u) exp(- % Q(D)) (3.1)
D=AV
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where Q(D) = (x~u)T(V+2D)-1(x-u). By a standard Taylor's series expan-

oS

sion the quality n“(p-u) is asymptotically p-variate normal Np(o’zu)

where, for easily computed expectations,

cov(ii) = | = ‘E(§§¥)l-1 E(susuT) |E(§§%)I-1 |D=xv "

{= () KP*2) 1371000 000) P )yy 440y PH2) 1)1

2, X(p+2) .2, ¥%(p+2) E
_ [1+2c+c - [ Y+BA+UA ]
- (55 Vs () v o G2

3+8A+4A

where ¢ = (11-2A)-1 and I is the pxp identity matrix. The asymptotic
efficiency of u relative to it is the ratio of determinants of covariance
matrices, namely é,

2
o) = (3+8A+ %2)35 p(p+2) (3.3) :
L+8A+ u4a

Table 1 gives a short listing of the pth root of these efficiencies.

Table 1
pth Root of Asymptotic Relative Efficiency of u

A

0 1 2 u ®

@ 1 .65 .91 .96 .99 1
§ 2 .56 .88 .95 .98 1
i p 3 .49 .85 .93 .98 1
m .42 .82 .92 .97 1

8 .24 .72 .87 .95 1

D T o

———,




x

The efficiency of u declines rapidly with increasing dimension

for low values of A. Efficiency of i increases with increasing A as

u becomes increasingly like %. ;

The asymptotic variance-covariance matrix of the Xp(p+l) esti-
mators ;jk’ jsk of V is considerably more difficult to obtain. The

covariances c°VC;jk’;£m) can be determined from the score functions

determined from (2.12). For example, from (2.16) we find that the

score function for Viek is

V.

s, = Vg (- ¥ QA - elx-w)? exn(~ % Q(AV)) K
kk ;

- (7))

where X, is the kth component of the vector x and c=(1+2A)-1. The !

asymptotic variance of ;kk is %

9s

v, -2
{ E(—BTkkkli)l E(S?’kk).

Straightforward, but tedious, computations gives the asymptotic

efficiency of ;kk relative to the maximum likelihood estimator Gkk as

() Ga) ™

e(;kk) =.% 1+2A 2+2A2 roal (3.4) ?
(1+2A)35p E+EAHUAS (1+2A) P |
32X (ae2n)2 | \ZF2X |

Selected values of these efficiencies are given in Table 2. The »
efficiencies of ij are about the same magnitude as those for ;kk' It
would be desirable to have the efficiencies of the matrix estimator
7 relative to 9, the maximum likelihood estimator, but these values

would be troublesome to obtain and would not be much different from

(3.4),
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Table 2
Asymptotic Efficiencies of the Estimators ik
A

.5 1 2 4 ®

1 .78 .87 .94 .98 1

2 .68 .77 . 84 .88 .90

p 3 .59 .69 .76 .80 .82
4 .52 .62 .69 .73 .75

5 .46 .56 .63 .67 .69

In the one dimensional case, e(;kk) tends to unity with increasing

A. In the p>1 dimensional case the efficiencies e( k) are bounded

;k
away from unity. The estimators V thus have a different character in
the cases p=1 and p>1. The efficiencies of ;kk for fixed A decline
rapidly with increasing dimensionality. This implies that the higher
the dimensionality, the larger the values of A one should like to use
if efficiency is a major consideration in the choice of A.

The nature of V as A+= may be determined by an application of

L'Hospital's rule. Some elementary manipulations yield the implicit

equation n

T () (xym) T
V= =t ° ’ (3.5)
- . i
¥ n(p+2) - % | (xo-0) TV 2 (x,-p)
j=1 ] ]

that the estimator V must satisfy asymptotically in A. When p=1 (3.6)
may be rearranged to give the usual maximum likelihood or moment esti-

mator for V. But for p22 the estimator cannot be so arranged; thus the

e e ——— - ———
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efficiencies in Table 2 are bounded away from unity when p>1 and A=w,
The curious estimator of V defined implicitly in (3.6) does not seem to
be especially interesting.

The estimators 311, 512, cees ;1p’ 322, cens ;PP are asymptotically
% p(p+l) variate Gaussian and are asympotically independent of y which
is asymptotically p-dimensional Gaussian.

There are a number of measures of qualitative robustness but
the most important is the influence function. Most of the other measures
are derived from the influence function. The influence function is
simply proportional to the score function (Huber, 1981, p. 45 ). The

influence function at the p-variate Gaussian distribution Np(u,V) is

s -1
IC(x;m,N) = {E(—& s
| <auT)‘ Hlp=av
= (1+) P () expl= § (o) TV (x)). (3.6)

This function is bounded and redescending to zero for all - % < A < =,
It also shows that the assumed Gaussian distribution is playing an
adaptive role in the estimation of u. Furthermore, the component %q

of the vector x plays a role in the estimation of the components Uy Hys

vees U Of pu as well as My Figures 1 provide contours of this influence

function for 1 for several values of A and correlation p at the standard bivariate

Gaussian distribution. The forms of these contours suggest that the
procedure will adaptively cluster the observaticus assumed to follow a

Gaussian parent according to those which belong to the parent and those

which do not - provided A is small enough.
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Figure la. Influence function contours for Uy
at the standard bivariate normal,
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Figure 1c. Influence function contours for ﬂi
at the standard bivariate normal,
p=.9, A=.5
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The influence function for V at Np(u,V) is more difficult to
obtain, at least computationally. For the j,k element of (2.12), we
note that the partial derivative of this element with respect to V is
a pxp matrix and hence differentiation of (2.12) with respect to V is
facilitated by the introduction of tensors. We need not go to such
lengths. The shape of the influence function is the important property
and it is determined by the score function Sy- The influence function
for V at Np(u,V) has shape determined by

sy = e(x-p)(x-1)T exp(~ % QAV)) + (1+c)-¥(P+2) v

- V exp(- % Q(AV))
(3.7)

This function is bounded and re-descending. It does not redescend to zero,

however, but rather to a positive definite matrix constant. Score functions

of Se. . for A=1 and several values of correlation p at the standard bivariate

normai]distribution are given in Figures 2. The contours are not closed

for large values of the arguments x, and x, of the vector x. However, the

1 2
appearance of these contours still suggest the possibility of clustering
by the estimation procedure. Moreover, the procedure can also be used to
determine observations which might be trimmed from the sample, if trimming
or peeling were for some reason a desirable thing to do. The observations
with relatively low values of the final weights ;j = exp(- %-(xj—ﬁ)TV_l(xj—ﬁ))
are those which might be peeled off.

The estimators y and V are not in the class of those considered
by Maronna (1976) even though they are similar in form. Devlin,

Gnanadesikan, and Kettenring (1981) report favorable results obtained

with the use of Maronna- and Huber- type multivariate estimators.

o —rerer

|
b
|
|
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Figure 2b. Score function for V44 at the standard
bivariate normal, p=.9, A=1 (Azimuth = 459,

Elevation = 309).
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4, Choice of A

There are two possible uses for the procedure we propose here. ﬁ
The first is to choose a single value of A, possibly based on efficiency
considerations, and use it as a robust procedure. The choices A=1 or
A=2 provide high efficiencies and good robustness properties. The
second use is the one for which the procedure was developed and which X
has proved most useful in practical applications. We use the procedure
to generate a sensitivity analysis. In a practical exploratory setting
we first compute the maximum likelihood estimators and use these for
starting values in the iterative algorithm. Next we take a value of A, !
4 or 2,and examine the behavior of the estimates. Finally, we would take
A=1 or % and gradually decrease it. The response surface of the parameter
values and the final weights as a function of A are of primary interest. !

In the process we determine estimates and final weights v.., = exp(- % (1+2)‘)”1

JA
TV _1(xj-ﬁ)) associated with each observation. If the estimates are

(xj-ﬁ)
sensitive to this variation in A, then there are problems associated with
either the data or with the Gaussian error model or both. The particular
observation(s) which is (are) the potential cause of the sensitivity are
identified by low values of Gjl

As c increases () decreases) observations a distance removed from p receive

vis-a-vis the whole set of these weights. §
i

lower weight. This discussion will be subsequently illustrated with an
example.
The derivation which led to the estimators given in (2.14) did not i

require that A in (2.14a) be the same as in (2.14b). We could for

example use A=1 for p and A=2 for V. Under such a choice we would then

be able to fix the efficiencies that might be desired for both u and v.
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The asymptotic efficiencies are appropriate because some evidence is
available that these estimators approach their asymptotic distributions
very rapidly.

Furthermore, we need not have restricted ourselves to a scalar
value of A in order to arrive at (2.14). At the expense of greater
algorithmic complexity we could have chosen values Aij corresponding
to each vij in the covariance matrix V. Let the pxp matrix L = (1+2)‘ij)
and the pxp matrix M = (2+2Aij) and let LxV = ((1+2Aij)vij) denote the
Hadamard product of L with V. Then by arguments similar to those
employed to arrive at (2.14) it may be shown that the more general

estimators for p and V satisfy the implicit relations

s T -1
I x. exp(- 3% (x.-u) (LxV) " (x,-n))
3=1 ] ] D

H o= . (4.1a)

1 T -1

T oexp(- % (x,-u) (LxV) ™ "(x,-u))
j=1 ] ]

and

n b
LxV = l I exp(- % (x.-u)T(va)-i(x.-u))I-1|n léing (LxV) (MxV) "L (Lxv)
j=1 ] J | Mxv |

-

(x.-u)(x.-u)T exp(- % (x.-u)T(LXV)_l(x.-u))l . (4.1b)
591 i j j

2+2A. .

The identity MxV = (1+2A ) x (LxV) is useful in computing (4.1b). The
ij

estimators of vij are computed in a component-wise fashioﬁ from the final
iteration of (u4.1b). These estimators would be of interest when it is
desired to treat different components of the xj differently. Such a
situation arises in the bounded influence regression problem (Belsley,

Kuh, and Welsch, 1980) where we may wish to be relatively critical in our




analysis of the dependent variables but less so for the independent vari-

ables since considerable information can be associated with a wide spread
in the independent variables.

) = :

Specifically, let us partition the vectors x. as (V.,Z_ .32 .see0sZ .
p Y‘) p ] y]’ 1]’ 2] 3 q]

(yj,zj) where q¢ = p-1, Let yj be the dependent variable in a regression

framework and let zj represent a q-vector of independent variables.

Corresponding to this partition we have uT = (ul,vT) where E(yj) = Ky

B(zj) = y. Further,

( 3 A
V11 V12 s o o le
Vi1 V12 Yor. V22 ¢t Vp
V= = . .
Vo1 Voo . .
\'2 v « s s+ V
| pl p2 PP

represents the corresponding partition of the covariance matrix. The

regression of yj on zj is (Anderson, 1958, Ch. 2)

_ -1
E(yjlzj) =uy + Y, Voo (zjmv). (4.2)

We may wish to estimate uy and Viq in a more critical fashion than V12

and this in turm in 2 more critical fashion than V To achieve this

22°

A associated with V

associlated with Vyqe 12 12°

we would take values Ali

and A associated with V., where A11 < A12 < A The matrix L would

22 22

thus be

22°
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11 A12 ot A12
A A .« A T
12 22 22 A11 A12}
L= : * = T
. . PLIRPPEE
LA12 A22 o .. 122

where 1 = (1,1,...,1)T, a gx1 vector of ones. For exploratory and
sensitivity analysis purposes we could consider first, say, kll’ A12,

Ayps Dext 3 A b PY b Apps and in general XA, , kA ,, ki), for some

11

values of k. Points z, far out and isolated in factor space or points whose

response y. give rise to large residuals will be identified by the response of the
final observation weight ;jL = exp(~ % (xj-ﬁ)T(va)-l(xj-ﬁ)). For a fixed value
of L, an estimate of the regression equation E(y|z) is obtained by substituting

parameter estimates il’ V12, 522, v in (4.2). Some of these ideas will

be subsequently illustrated.

S. Examples

Example 5.1. The basic data for this example are taken from
Anderson (1958). The first 75 points consist of the first two (of four)
components of this data with five additional (outlying) observations
appended. We have chosen A=y, 2, 1, % for this illustration. Table 3
provides the estimates of the means and covariances as well as the maximum

likelihood estimators. Table 3 also summarizes the weights

ij = exp(- %-(x-ﬁ)T 1 (x-1)) associated with each point on the assump-
tion that the data follow a single multivariate Gaussian distribution.
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With A = + =, all weights are the same. As A decreases from + «, the

weights become differentiated. The 5 outlying observations are rendered

distinctive by their diminishing weights ij as A decreases. This
indicates that these observations are not consistent with the remainder
of the observations and the assumption of a single Gaussian distribution.
This is further highlighted by referral to equations (2.8) and (2.9).
At convergence of the iterative estimation procedure we find for 6=u or
8=V

af(x) x X -1 F

% fm(x) (f(x)*fm(x) -n ) fw(x-xj)) dx = 0 (5.1)

30
R 3=1
p

where fw(x) is the Gaussian density wi*h mean 0 and covariance matrix AV,

which implies that the density f(x)ﬁfw(x) is being estimated by
n
N -1 o) - 1 -
gx(x) = n At & exp(- 57-(x—x.)T vt (x-x.)).
3=1 ] ]

The density f(x)gfw(x) may be regarded as a prior distribution, ék(x)

as a posterior density given the xj. Figures 3a, 3b, 3&, depicts what

the estimation procedure perceives as X decreases. For large A the

density estimate éx(x) is approximately uniform. At A=2 the density

estimate contours are smooth except for some siight distortion in the

area of (195,130). At A=1 the probability surface is becoming distorted

in the vicinity of the contamination but the distortion is not yet pronounced.
Compare the estimates of the parameters and the observation weights ij.
At A=X% the distortion has become dramatic and indeed separate "hills"

for the outlying points have formed. Again compare the estimates and ij

for A=k%. Since the density estimate perceives the outlying observations

e



Table 3a

Sensitivity of Observationai Weights
vjA(X1OO) to Variation in ) i

A ;i
X, X, mn 2 1 5 ' !
1 179 145 36 39 45 50 :
2 201 152 33 36 23 16 v
3 185 149 37 41 47 55
In 188 149 37 40 yh 49 ]
5 171 142 34 35 39 39 3
6 192 © 152 37 39 uy ug 3
7 190 149 37 39 41 42 \
8 189 152 37 40 47 53 "
9 197 159 35 36 39 36 |
10 187 151 37 41 47 55 ‘
11 186 148 37 40 45 50
12 174 147 35 37 38 36 ‘
13 185 152 37 u1 u6 50 3
14 195 157 36 38 42 43 ]
15 187 158 35 36 30 20 :
16 161 130 27 23 17 8 |
17 183 158 34 34 22 10 1
18 173 148 35 36 33 27 r
19 182 146 37 uo us 50 ;
20 165 137 31 30 30 25 |
21 185 152 37 41 46 50 ;
22 178 147 36 39 45 ug ;
23 176 143 36 38 42 u5 |
24 200 158 34 35 37 36 |
25 187 150 37 41 47 54 i
26 200 130 18 6 0 0
27 200 135 23 11 0 0
28 165 160 24 13 1 0
29 195 170 28 22 6 1
30 220 170 23 18 13 6
Table 3b !
Sensitivity of Parameter Estimates to Variation in A
A
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as not consistent with the remainder of the data and the single Gaussian
assumption, the reason for the down weighting of the outlying observations
has become clear. If we let A+0+, the density estimator becomes a set of
Dirac delta functions located at each point.

At A=)s, the procedure has effectively clustered the data with the
outlying observations excluded from the main cluster. Accordingly, as A is
varied, a dramatic change in the estimators implies the existence of
clusters of observations different from the main cluster and not consistent
with the prior assumption of strict Gaussianity. The reconstruction of
the error density becomes increasingly dependent on the data as A decreases
and hence the procedure is increasingly critical with decreasing A.

Example 5.2. If (yj, zj), j = 1,2,...,n represents a random sample

from N2(u,V), B= (ul,v)T, then the regression of y on z is given by

E(ylz) = u, + V,, V52 (z-v) = B + 8,2,

say, and the B's may be computed from the estimates of p and V. The

data for this example is taken from Andrews and Pregibon (1978) who were
concerned with regression models. The data are presented in Table 4.

The least squares or maximum likelihood estimates are also presented in
Table 4, We shall use the L matrix version of the modified integrated
squared error procedure as discussed in section 4. We wish to be most
critical with respect to estimation of Viq and Hys to somewhat less critical
with respect to estimation of V12, and least critical with respect to esti-
mation of V22 and v. Thus we take, for any single application such as
robost regression, Aii < Al < A,,. This choice seems to be particularly

2 22

appealing since, in a regression framework, we wish to retain the high




WO~ F WD

Table ba

Sensitivity of ;er (x100) to Variation in A

11° 20 290

(Ail’ )‘12’ )‘22)
'y X (2,4.8) (1,2,4) (.5,1,2)
95 15 100 99 97
71 26 72 ug 20
83 10 85 76 65
91 9 96 93 88
106 15 88 82 74
87 20 96 89 72
93 18 99 96 87
100 11 g8 97 97
104 8 a5 91 sy
oy 20 96 91 78
113 7 81 70 54
96 9 99 97 95
83 10 8s 76 65
84 11 88 81 71
102 11 97 95 383
100 10 98 97 96
105 12 @2 89 8y
57 42 Lo 11 0
121 17 50 33 19
86 11 92 86 79
20 10 38 97 96
Table ub
3 » * . . » . *
Sensitivity of Estimates to Variation in All’ A12, A22
(2,4,8) (1,2,4) (.5,1,2)
g 13.4 12.8 12,3
v 34,6 85.3 95.9
v11 u5.6 32.7 23.6
Vio -49,2(-.586) -29.2(-.143) -14.8(-.27)
v22 168.3 143.9 125.1

#
The estimate of correlation is given in parentheses
along with 2

2

S e
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efficiency associated with substantial spread in the independent variable.

If on the other hand, we wish to be aware of extreme values of the inde-

pendent variables, a sensitivity analysis may be more appropriate. We

first take A, =2, =4, A

112 249 22~8-

are presented in column 3 of Table 4. Next we take A

The weights ajL = exp(- % (xj—ﬁ)T(LxV)'l)(xj-u))

2, A,,=4 and !

11712 21572 Ay,

the results are presented in column 4. The parameter estimates are sensi-

tive functions of L. The points which are most influential or potentially
inconsistent vis-a-vis the linear model with a Gaussian error structure are
determined from observational weights GjL’ i.e. those with low values of ;
;jL' Three points, 2, 18, 19, are especially singled out. Point 18 repre- L
sents an extreme point in the z-space and is most influential on the estimate
22 of the regression line. Point 2 has the second- '

most extreme value of z. Point 19 produces an extreme residual. Analogous

of the slope 81 = v12/v

results obtain if all Aij = A and XA is varied in order to determine the

response of the parameter estimates and the observational weights to

variation in A. In many cases, not all, taking just a single value of A
(or set of values Aij) provides sufficient information concerning the
response of the parameter estimates and weights ij for GjL) to variation
in A (or L) in the sense that if A (the Aij) were further decreased, the
trend in response will be continued. In these cases a robust analysis

will lead to the same conclusions as the sensitivity analysis. In some

Example 5.3. It is possible to produce non-Gaussian data for which

|
cases, a change in trends will be observed as A decreases. }
|
variation in A does not lead to dramatic changes in the parameter estimates i

or low values of Gj The three dimensional data for this illustration

A.
are taken from Gnanadesikan (13877, pp. 50-52). The 61 triads of his
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example 7 were cobtained by appending a standard normal deviate to each of
the coordinates on the surface of a specified paraboleoid. The two-
dimensional scatter plots of these data are not suggestive of the data in
three dimensions lying near a curved surface. We determine the response
of the parameter estimates to changes in A. The mean vector estimate

at x=8 is (-3.5u4, 4,72, 26.94) while at A=k it is (-3.53, 4.70, 26.95).
The variance estimates at A=8 are (3.81, 2,33, 2.94) while at A=k they
are (4.43, 2.76, 3.79); the correlation estimates at A=8 are (-.51, -.47,
.20) while at A=X they are (-.56, -.50, .27). The estimates of the mean
are remarkably stable but the estimated variances increase with a decrease
in A. These characteristics imply that if the data or the Gaussian dis-
tribution model is not appropriate, the best place to look for difficulties
is at the centroid. This is confirmed by the distribution of the weights
ij, especially for A=k, For example, for A=¥, the largest three weights
;'A’ .89, .84, .82, which indicate that there are no observations near

the centroid. This deficiency of observations near the centroid is also
determinable from A=8 results, but it is highlighted at the smaller values
of A. A plot of -2(1+21) log ij on x2 paper with 3 degrees of freedom

further emphasizes the inappropriateness of the Gaussian assumption.

6. Multivariate Two-Way Cross Classification

The system of equations (2.6) and (2.7) are readily extended to
include multivariate regression and design situations. We indicate how

this may be done for the case of a two-way cross classified design. The

arguments are similar for other designs and regression problems.

S el
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The two-way cross classified model may be written

E(x.

sk} T Wt oyt By

12 1,2,00058, k= 1,250005b, 2 12,0000, By 2 1. The xg,

are assumed to be p-dimensional Gaussian with covariance matrix V.

quantities u, aj, Bk are px1 location vectors. Define

¢jk(u) = exp{iuT(u + aj + sk) -3 uTVu},

f].k(X) = |21'V|_;5 exp{- % (x-u—aj-sk)T 1 (x-u-aj-Bk)},
and
w(¢(u)) = exp( - %-uTVu),
f ( - -;2 T -1
" x) = |2mav| 2 exp(- % x (AV) "x) .

The system of equations parallel to (2.6) and (2.7) are

a b ng (u)
11 f —3—(«» (0 - exp(iuxg, ))* fu(e(u)) |2 0
3=1 k=1 2=1 Rp

or, equivalently

a b nyx K (x)
(2m)? 7 I I J ——J————-* £ (R)(£s k(x)*f (x) - £ (x— g )ax =
71 k=1 421 4
P

(6.1)

The

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

with arguments 8=u, aj, Bk’ Vv, i=1,2,...,a, k = 1,2,...,b. Equation

(6.6) may be explicitly evaluated and leads to the implicit equations

§]§ % (Ripeg =B =85 = B Vipp 0 T 0o
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E % (xjkl - Wy - Bk) Vikea 0, j = 1,2,...,a
g % (xjkz - M-y - B,) Viepa = 0 K= 12,005,

The rank of this system of equations is a+b-1. The first of these equations

suggest the constraints

HEPAR T

be appended to produce a full rank system. Along with (6.8) we obtain

the implicit equations

TY T Ry Vs
. jki "Jke,A
uzjkl (6.9)
§ E E Vike A
E % (xjkz U Bk) ijz,A
as = » §j = 1,2,...,a-1, (6.10)
E § ViKk&,A
Z E (Ripp = W 7 25) Va2
B, = 2 s k= 1,2,...,b-1 (6.11)
§ % Vike,A
and T
» g E g (xjkl— p - aj - Bk)(xjkz -u - aj - Bk) ijz,A
V = (1+42))
+2
TIT (pan- (22) ) o
SR q jk&,\ 2+2\ :
where
v = exp(- % (14—22\)'1 (x -u-a, -8B )TV'i(x -u-a, - B8))
FKL,A 3k i 7 %k jxa 57 B

(6.13)




Observations xjkz which require special consideration are indicated, as

in section 5, by low values of ijz’x vis-a-vis the whole set. A low value
of ;jkl,k may mean that the particular observation is a potential outlier,
Too many low values will imply that the model assumption of a single
Gaussian parent may not be warranted or that the model is mis- specified

or that there are indeed a number of potential outliers. In the latter case
a goodness-of-fit test will usually declare against the Gaussian error

distribution. Furthermore, if n., > 1 and we find that individua®’ cells have

jk

low values v associated with them, then interaction in the table is a

JK2,A
distinct possibility. In this case we generalize the model to
E(xjkz) =y 4 aj + Bk + ij.
and proceed accordingly.
This multivariate procedure can be especially useful for exploratory

purposes. Determination of the sensitivity of ¥ and the parameter

jk&,A
estimates to changes in A will serve to uncover potential probiems with
the data or the model considered as a unit. The procedure is computationally
inexpensive and easy to use. This procedure does not apparently lend itself
to hypothesis testing problems per se. However, it could be effectively
used in conjunction with tests of hypotheses. If the sensitivity analysis
uncovers some difficulty with the data or the model, then a test of hypothesis
may be appropriate.

Example 6.1. The data (Table S5) for this example were taken from
Anderson (1958, p. 218) who gives some additional background concerning
these data. The first component of the observation vector is a barley

yield in a given year; the second component is the .ame measurement made

the following year.




Table 5

VARIETIES |
r A
1 2 3 4 5
1 81 105 120 110 98
81 82 80 87 8u
0 147 142 151 192 146
100 116 112 148 108
3 82 77 78 131 90 !
§ 103 105 117 140 130
=
5] y | 120 121 124 141 125
S 99 62 96 126 76
5 99 89 69 89 104
66 50 97 62 80 .
5 87 77 79 102 96 '
68 67 67 92 au
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We fit the model (6.1) to this data by the method of maximum
likelihood and by the modified integrated squared error method for various
values of A with the objective of performing a sensitivity analysis. The
results of this analysis are summarized in Tables 6 and 7. We have only
given the results for A=2 since the response of the parameter estimates
and the final weights to decreases in A continues the trend evidenced in
Tables 6 and 7. Table 6 indicates that the largest change occurred in
the parameter ag and the covariance. The correlation increased from .22

to .37. The final weights v, are given in Table 7. Observation (5,3)

jk,2
receives an especially low weight while observations (1,3), (3,4), (5,4),
and, to a lesser extent, (2,4) also receive low weights. It is likely
that (5,3) is an outlier although we have not applied any tests of dis-
cordancy. We are suggesting that low weights raise the suspicion of
potential outliers or other difficulties with the data and the model
(Gaussianity, additivity, etc.). We are not suggesting that this procedure
be used as a formal test for outliers. These observations have had the
effect of reducing the correlation between the first and second year yields.
A rough rule of how improbable the weights are may be determined by
the following considerations. The quadratic form (xjk-ﬁ)TV-l(xjk—ﬁ) is
approximately x2 on 2 degrees of freedom. The 1% point of this distribution
is 9.21. Roughly, for A=2, we would expect weights less than
exp(- 9.21/(2(1+2A))) = .40 about 1% of the time.
Additional reduction of A say to 1.5 will produce a somewhat stronger

version of basically the same results. However, when A is decreased to

unity the procedure starts to break down in the sense that the singled-out

observations above receive weights near 0 and a few of the other originally




ML

A=2

2

Table 6

Maximum Likelihood (ML) and Modified Integrated
Squared Error (A=2) Parameter Estimates

u 8, 8, 85 8, Bs
109.1 -6.4 - 7.2 -5.6 18.4 0.8
93.2 -7.0 -12.8 1.7 16.0 2.2
108.8 -5.7 - 7.2 -3.5 18.6 1.0
92.8 -6.1 -11.2 -1.6 17.9 4,2
@y a, aq @, ag ag
- 6.3 46.5 -17.5 17.1 -19.1 -20.9
-10.4 23.6 25.8 -1.4 -22.2 -15.6
- 7.9 45.3 -19.7 16.9 -12.7 -21.4
-10.8 22.3 25.3 - .1 ~-25.5 -16.1
i v
109.3 .22 101.9 .
26.7 133.9 B2.4 125.5
Table 7
Final Weights Vik,2 (x100)
VARIETIES

1 2 3 y )

1 73 8s 56 85 99

2 94 32 100 66 88

3 ou 98 83 57 95

4 87 68 98 77 69

5 93 97 12 u6 93

6 95 98 L3 98 87
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low weights have been further reduced. The first component variance is
dramatically reduced. The reason for this is that some of the observations
are separated in such a way that the empirical density estimator around
it intersects only slightly with the empirical density estimator around
other observations. Accordingly, multiple densities are perceived by the
procedure and the more isolated and less massive with respect to the
model (6.1) and the Gaussian assumption are basically excluded from the
estimates by virtue of their low weights.

When A=0, the dens.ty estimate fw(x_xjk)Of (6.7) around each point
xjk becomes a Dirac delta function. This fact does not ensure that all
but a few weights will tend to zero, however. If the model (6.1) is
truly appropriate and if the data x.

jke?

then the variances in the covariance matrix will ultimately begin to increase

2>1 replicates are truly Gaussian,

with further decreases in A.
It would be desirable to have anestimator of V whose influence function
redescends to zero. Such an estimator is derivable from the modified inte-

grated squared error procedure but we do not present it here. Still another

approach, involving a generalization of Shannon's information or likelihood

produces very similar estimators.
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